Preservation of stability properties near fixed points of linear Hamiltonian systems by symplectic integrators
نویسندگان
چکیده
Based on reasonable testing model problems, we study the preservation by symplectic Runge-Kutta method (SRK) and symplectic partitioned Runge-Kutta method (SPRK) of structures for fixed points of linear Hamiltonian systems. The structure-preservation region provides a practical criterion for choosing step-size in symplectic computation. Examples are given to justify the investigation.
منابع مشابه
Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملLong-Term Stability of Symmetric Partitioned Linear Multistep Methods
Long-time integration of Hamiltonian systems is an important issue in many applications – for example the planetary motion in astronomy or simulations in molecular dynamics. Symplectic and symmetric one-step methods are known to have favorable numerical features like near energy preservation over long times and at most linear error growth for nearly integrable systems. This work studies the sui...
متن کاملGeometric Exponential Integrators
In this paper, we consider exponential integrators for semilinear Poisson systems. Two types of exponential integrators are constructed, one preserves the Poisson structure, and the other preserves energy. Numerical experiments for semilinear Possion systems obtained by semi-discretizing Hamiltonian PDEs are presented. These geometric exponential integrators exhibit better long time stability p...
متن کاملProperties of Hamiltonian Variational Integrators
The field of geometric numerical integration(GNI) seeks to exploit the underlying (geometric)structure of a dynamical system in order to construct numerical methods that exhibit desirable properties of stability and/or preservation of invariants of the flow. Variational Integrators are built for Hamiltonian systems by discretizing the generating function of the symplectic flow, rather than disc...
متن کاملExplicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations
In this paper, we study the integration of Hamiltonian wave equations whose solutions have oscillatory behaviors in time and/or space. We are mainly concerned with the research for multi-symplectic extended Runge-Kutta-Nyström (ERKN) discretizations and the corresponding discrete conservation laws. We first show that the discretizations to the Hamiltonian wave equations using two symplectic ERK...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2011